|  Help  |  About  |  Contact Us

Publication : The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA.

First Author  Fatemi M Year  2001
Journal  J Mol Biol Volume  309
Issue  5 Pages  1189-99
PubMed ID  11399088 Mgi Jnum  J:72443
Mgi Id  MGI:2152690 Doi  10.1006/jmbi.2001.4709
Citation  Fatemi M, et al. (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309(5):1189-99
abstractText  The mammalian DNA methyltransferase Dnmt1 is responsible for the maintenance of the pattern of DNA methylation in vivo. It is a large multidomain enzyme comprising 1620 amino acid residues. We have purified and characterized individual domains of Dnmt1 (NLS-containing domain, NlsD, amino acid residues: 1-343; replication foci-directing domain, 350-609; Zn-binding domain (ZnD), 613-748; polybromo domain, 746-1110; and the catalytic domain (CatD), 1124-1620). CatD, ZnD and NlsD bind to DNA, demonstrating the existence of three independent DNA-binding sites in Dnmt1. CatD shows a preference for binding to hemimethylated CpG-sites; ZnD prefers methylated CpGs; and NlsD specifically binds to CpG-sites, but does not discriminate between unmethylated and methylated DNA. These results are not compatible with the suggestion that the target recognition domain of Dnmt1 resides in the N terminus of the enzyme. We show by protein-protein interaction assays that ZnD and CatD interact with each other. The isolated catalytic domain does not methylate DNA, neither alone nor in combination with other domains. Full-length Dnmt1 was purified from baculovirus-infected insect cells. Under the experimental conditions, Dnmt1 has a strong (50-fold) preference for hemimethylated DNA. Dnmt1 is stimulated to methylate unmodified CpG sites by the addition of fully methylated DNA. This effect is dependent on Zn, suggesting that binding of methylated DNA to ZnD triggers the allosteric activation of the catalytic center of Dnmt1. The allosteric activation model can explain kinetic data obtained by others. It suggests that Dnmt1 might be responsible for spreading of methylation, a process that is observed during aging and carcenogenesis but may be important for de novo methylation of DNA. Copyright 2001 Academic Press.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression