| First Author | Persson AS | Year | 2007 |
| Journal | BMC Neurosci | Volume | 8 |
| Pages | 10 | PubMed ID | 17250763 |
| Mgi Jnum | J:119491 | Mgi Id | MGI:3702341 |
| Doi | 10.1186/1471-2202-8-10 | Citation | Persson AS, et al. (2007) Kv1.1 null mice have enlarged hippocampus and ventral cortex. BMC Neurosci 8:10 |
| abstractText | BACKGROUND: Mutations in the Shaker-like voltage-gated potassium channel Kv1.1 are known to cause episodic ataxia type 1 and temporal lobe epilepsy. Mice that express a malfunctional, truncated Kv1.1 (BALB/cByJ-Kv1.1mceph/mceph) show a markedly enlarged hippocampus and ventral cortex in adulthood. RESULTS: To determine if mice lacking Kv1.1 also develop a brain enlargement similar to mceph/mceph, we transferred Kv1.1 null alleles to the BALB/cByJ background. Hippocampus and ventral cortex was then studied using in vivo 3D-magnetic resonance imaging and volume segmentation in adult Kv1.1 null mice, BALB/cByJ-Kv1.1mceph/mceph, BALB/cByJ-Kv1.1mceph/+, BALB.C3HeB -Kv1.1-/+ and wild type littermates. The Kv1.1 null brains had dramatically enlarged hippocampus and ventral cortex. Mice heterozygous for either the null allele or the mceph allele had normal-sized hippocampus and ventral cortex. CONCLUSION: Total absence of Kv1.1 can induce excessive overgrowth of hippocampus and ventral cortex in mice with a BALB/cByJ background, while mice with one wild type Kv1.1 allele develop normal-sized brains. |