|  Help  |  About  |  Contact Us

Publication : Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase.

First Author  Ishihara H Year  1996
Journal  J Biol Chem Volume  271
Issue  39 Pages  23611-4
PubMed ID  8798574 Mgi Jnum  J:35632
Mgi Id  MGI:83079 Doi  10.1074/jbc.271.39.23611
Citation  Ishihara H, et al. (1996) Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 271(39):23611-4
abstractText  Accumulating evidence suggests that phosphatidylinositol metabolism is essential for membrane traffic in the cell. Of particular importance, phosphatidylinositol transfer protein and the type I phosphatidylinositol- 4-phosphate 5-kinase (PI4P5K) have been identified as cytosolic components required for ATP-dependent, Ca2+-activated secretion. In order to identify PI4P5K isoforms that may play important roles in regulated insulin secretion from pancreatic beta-cells, we employed the polymerase chain reaction with degenerate primers and screening of a cDNA library of the murine pancreatic beta-cell line MIN6. Two novel cDNAs, designated PI4P5K-Ialpha and PI4P5K-Ibeta, were identified, which contained complete coding sequences encoding 539- or 546-amino acid proteins, respectively. These cDNAs were expressed in mammalian cells with an adenoviral expression vector. Proteins of both isoforms migrated at 68 kDa on SDS-polyacrylamide gel electrophoresis and exhibited phosphatidylinositol-4-phosphate 5-kinase activity, which was activated by phosphatidic acid, indicating that these proteins were type I isoforms. While these isoforms share a marked amino acid sequence homology in their central portion, the amino- and carboxyl-terminal regions differ significantly. Northern blot analysis depicted that tissue distributions differed between the two isoforms. Molecular identification of type I PI4P5K isoforms in insulin-secreting cells should provide insights into the role of phosphatidylinositol metabolism in regulated exocytosis of insulin-containing large dense core vesicles.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression