|  Help  |  About  |  Contact Us

Publication : The non-lysosomal β-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi.

First Author  Körschen HG Year  2013
Journal  J Biol Chem Volume  288
Issue  5 Pages  3381-93
PubMed ID  23250757 Mgi Jnum  J:195545
Mgi Id  MGI:5484792 Doi  10.1074/jbc.M112.414714
Citation  Korschen HG, et al. (2013) The non-lysosomal beta-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem 288(5):3381-93
abstractText  GBA1 and GBA2 are both beta-glucosidases, which cleave glucosylceramide (GlcCer) to glucose and ceramide. GlcCer is a main precursor for higher order glycosphingolipids but might also serve as intracellular messenger. Mutations in the lysosomal GBA1 underlie Gaucher disease, the most common lysosomal storage disease in humans. Knocking out the non-lysosomal GBA2 in mice results in accumulation of GlcCer outside the lysosomes in various tissues (e.g. testis and liver) and impairs sperm development and liver regeneration. However, the underlying mechanisms are not well understood. To reveal the physiological function of GBA2 and, thereby, of the non-lysosomal GlcCer pool, it is important to characterize the localization of GBA2 and its activity in different tissues. Thus, we generated GBA2-specific antibodies and developed an assay that discriminates between GBA1 and GBA2 without the use of detergent. We show that GBA2 is not, as previously thought, an integral membrane protein but rather a cytosolic protein that tightly associates with cellular membranes. The interaction with the membrane, in particular with phospholipids, is important for its activity. GBA2 is localized at the ER and Golgi, which puts GBA2 in a key position for a lysosome-independent route of GlcCer-dependent signaling. Furthermore, our results suggest that GBA2 might affect the phenotype of Gaucher disease, because GBA2 activity is reduced in Gba1 knock-out fibroblasts and fibroblasts from a Gaucher patient. Our results provide the basis to understand the mechanism for GBA2 function in vivo and might help to unravel the role of GBA2 during pathogenesis of Gaucher disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression