| First Author | Andrabi SA | Year | 2011 |
| Journal | Nat Med | Volume | 17 |
| Issue | 6 | Pages | 692-9 |
| PubMed ID | 21602803 | Mgi Jnum | J:257410 |
| Mgi Id | MGI:6120646 | Doi | 10.1038/nm.2387 |
| Citation | Andrabi SA, et al. (2011) Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med 17(6):692-9 |
| abstractText | Glutamate acting on N-methyl-D-aspartate (NMDA) receptors induces neuronal injury following stroke, through activation of poly(ADP-ribose) polymerase-1 (PARP-1) and generation of the death molecule poly(ADP-ribose) (PAR) polymer. Here we identify Iduna, a previously undescribed NMDA receptor-induced survival protein that is neuroprotective against glutamate NMDA receptor-mediated excitotoxicity both in vitro and in vivo and against stroke through interfering with PAR polymer-induced cell death (parthanatos). Iduna''s protective effects are independent and downstream of PARP-1 activity. Iduna is a PAR polymer-binding protein, and mutation at the PAR polymer binding site abolishes the PAR binding activity of Iduna and attenuates its protective actions. Iduna is protective in vivo against NMDA-induced excitotoxicity and middle cerebral artery occlusion-induced stroke in mice. To our knowledge, these results define Iduna as the first known endogenous inhibitor of parthanatos. Interfering with PAR polymer signaling could be a new therapeutic strategy for the treatment of neurologic disorders. |