|  Help  |  About  |  Contact Us

Publication : Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4.

First Author  Liang CF Year  2013
Journal  Arterioscler Thromb Vasc Biol Volume  33
Issue  4 Pages  777-84
PubMed ID  23413427 Mgi Jnum  J:217972
Mgi Id  MGI:5616295 Doi  10.1161/ATVBAHA.112.301087
Citation  Liang CF, et al. (2013) Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 33(4):777-84
abstractText  OBJECTIVE: To analyze the role of toll-like receptor 4 in modulating metabolism and endothelial function. APPROACH AND RESULTS: Type 2 diabetic mice with mutated toll-like receptor 4 (DWM) were protected from hyperglycemia and hypertension, despite an increased body weight. Isometric tension was measured in arterial rings with endothelium. Relaxations to acetylcholine were blunted in aortae and mesenteric arteries of Lepr(db/db) mice, but not in DWM mice; the endothelial NO synthase dimer/monomer ratio and endothelial NO synthase phosphorylation levels were higher in DWM preparations. These differences were abolished by apocynin. Contractions to acetylcholine (in the presence of L-NAME) were larger in carotid arteries from Lepr(db/db) mice than from DWM mice and were inhibited by indomethacin and SC560, demonstrating involvement of cyclooxygenase-1. The release of 6-ketoprostaglandin F1alpha was lower in DWM mice arteries, implying lower cyclooxygenase-1 activity. Apocynin, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, catalase, and diethyldithiocarbamate inhibited endothelium-dependent contractions. The mRNA and protein levels of NADPH oxidase isoforms NOX1 and NOX4 were downregulated in DWM mice arteries. The in vivo and in vitro administration of lipopolysaccharide caused endothelial dysfunction in the arteries of wild-type, but not toll-like receptor 4-mutated mice. CONCLUSIONS: Toll-like receptor 4 plays a key role in obesity and diabetes-associated endothelial dysfunction by increasing oxidative stress.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression