|  Help  |  About  |  Contact Us

Publication : The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes.

First Author  Shimoda M Year  2011
Journal  Diabetologia Volume  54
Issue  5 Pages  1098-108
PubMed ID  21340625 Mgi Jnum  J:169587
Mgi Id  MGI:4941384 Doi  10.1007/s00125-011-2069-9
Citation  Shimoda M, et al. (2011) The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54(5):1098-108
abstractText  AIMS/HYPOTHESIS: We investigated the molecular mechanism by which the human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells in diabetic db/db mice. METHODS: Male db/db and m/m mice aged 10 weeks received liraglutide or vehicle for 2 days or 2 weeks. In addition to morphological and biochemical analysis of pancreatic islets, gene expression profiles in the islet core area were investigated by laser capture microdissection and real-time RT-PCR. RESULTS: Liraglutide treatment for 2 weeks improved metabolic variables and insulin sensitivity in db/db mice. Liraglutide also increased glucose-stimulated insulin secretion (GSIS) and islet insulin content in both mouse strains and reduced triacylglycerol content in db/db mice. Expression of genes involved in cell differentiation and proliferation in both mouse strains was regulated by liraglutide, which, in db/db mice, downregulated genes involved in pro-apoptosis, endoplasmic reticulum (ER) stress and lipid synthesis, and upregulated genes related to anti-apoptosis and anti-oxidative stress. In the 2 day experiment, liraglutide slightly improved metabolic variables in db/db mice, but GSIS, insulin and triacylglycerol content were not affected. In db/db mice, liraglutide increased gene expression associated with cell differentiation, proliferation and anti-apoptosis, and suppressed gene expression involved in pro-apoptosis; it had no effect on genes related to oxidative stress or ER stress. Morphometric results for cell proliferation, cell apoptosis and oxidative stress in db/db mice islets were consistent with the results of the gene expression analysis. CONCLUSIONS/INTERPRETATION: Liraglutide increases beta cell mass not only by directly regulating cell kinetics, but also by suppressing oxidative and ER stress, secondary to amelioration of glucolipotoxicity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression