First Author | Wen Y | Year | 2022 |
Journal | Metabolism | Volume | 136 |
Pages | 155293 | PubMed ID | 35995279 |
Mgi Jnum | J:360024 | Mgi Id | MGI:7345337 |
Doi | 10.1016/j.metabol.2022.155293 | Citation | Wen Y, et al. (2022) Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism 136:155293 |
abstractText | Diabetic retinopathy (DR) is one of the leading causes of severe visual impairment worldwide. However, the role of adaptive immune inflammation driven by microglia/macrophages in DR is not yet well elucidated. Kdm6a is a histone demethylase that removes the trimethyl groups of histones H3K27 and plays important biological roles in activating target genes. To elucidate the role of Kdm6a in microglia/macrophages in diabetic retinas, we established diabetic animal models with conditional knockout mice to investigate the impacts of Kdm6a deficiency. The RNA-seq analysis, mass spectrum examination, immunohistochemistry and detection of enzyme activities were used to elucidate the effect of Kdm6a deletion on gene transcription in microglia/macrophages. The expression of Kdm6a was increased in the retinas of diabetic mice compared to the control group. Loss of Kdm6a in microglia/macrophages ameliorated the diabetes-induced retinal thickness decrease, inflammation, and visual impairment. Kdm6a in microglia/macrophages regulated Lcn2 expression in a demethylase activity-dependent manner and inhibited glycolysis progression in photoreceptor cells through Lcn2. These results suggest that Kdm6a in microglia/macrophages aggravated diabetic retinopathy by promoting the expression of Lcn2 and impairing glycolysis progression in photoreceptor cells. |