|  Help  |  About  |  Contact Us

Publication : Combining mass spectrometry and machine learning to discover bioactive peptides.

First Author  Madsen CT Year  2022
Journal  Nat Commun Volume  13
Issue  1 Pages  6235
PubMed ID  36266275 Mgi Jnum  J:330197
Mgi Id  MGI:7366482 Doi  10.1038/s41467-022-34031-z
Citation  Madsen CT, et al. (2022) Combining mass spectrometry and machine learning to discover bioactive peptides. Nat Commun 13(1):6235
abstractText  Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression