|  Help  |  About  |  Contact Us

Publication : RIPK3 as a potential therapeutic target for Gaucher's disease.

First Author  Vitner EB Year  2014
Journal  Nat Med Volume  20
Issue  2 Pages  204-8
PubMed ID  24441827 Mgi Jnum  J:206864
Mgi Id  MGI:5553190 Doi  10.1038/nm.3449
Citation  Vitner EB, et al. (2014) RIPK3 as a potential therapeutic target for Gaucher's disease. Nat Med 20(2):204-8
abstractText  Gaucher's disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease. Heterozygous mutations in GBA are a major risk factor for Parkinson's disease. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD) and in nGD mouse models. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

17 Bio Entities

0 Expression