|  Help  |  About  |  Contact Us

Publication : Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks.

First Author  Exelby K Year  2021
Journal  Development Volume  148
Issue  4 PubMed ID  33547135
Mgi Jnum  J:302546 Mgi Id  MGI:6507921
Doi  10.1242/dev.197566 Citation  Exelby K, et al. (2021) Precision of Tissue Patterning is Controlled by Dynamical Properties of Gene Regulatory Networks. Development :dev197566
abstractText  During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression