First Author | Husøy T | Year | 2005 |
Journal | Mutat Res | Volume | 580 |
Issue | 1-2 | Pages | 111-8 |
PubMed ID | 15668113 | Mgi Jnum | J:95966 |
Mgi Id | MGI:3528505 | Doi | 10.1016/j.mrgentox.2004.10.010 |
Citation | Husoy T, et al. (2005) Adenomatous polyposis coli influences micronuclei induction by PhIP and acrylamide in mouse erythrocytes. Mutat Res 580(1-2):111-8 |
abstractText | Micronucleus (MN) induction in erythrocytes of multiple intestinal neoplasia (Min) mice with heterozygous Apc mutation was measured after s.c. injections of acrylamide, glycidamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and colchicine, and compared with wild-type (wt) mice. Since Apc influences microtubule dynamics, we wanted to test whether Min-mice were more sensitive to the production of MN than wild-type mice. We also examined the effect of pre-treatment with cytosine beta-d-arabinofuranoside (Ara C) and hydroxyurea, which inhibit ligation of DNA strand breaks in the repair of DNA adducts. All compounds induced a significant increase in MN in both strains of mice with the following potencies: acrylamide<glycidamide<PhIP. No difference in the induction of MN was seen between Min-mice and wt-mice exposed to acrylamide, glycidamide or colchicine without pre-treatment. However, in Min-mice, PhIP treatment induced much less MN than in wt-mice, with about four- and six-fold increase in MN in Min-mice and wt-mice, respectively. A reduced ability to repair PhIP adducts may be the reason for the lower induction of MN in Min-mice. Treatment with Ara C and hydroxyurea, to increase sensitivity, gave more than a four-fold increase in MN, but strongly reduced proliferation. Pre-treatment with Ara C and hydroxyurea made the Min-mice slightly more sensitive to MN induction by glycidamide compared to wt-mice. We conclude that Min-mice are less sensitive than wt-mice to MN induction by PhIP that forms bulky DNA adducts, while Min-mice and wt-mice are equally sensitive to MN induction by acrylamide and glycidamide that form DNA base adducts. |