|  Help  |  About  |  Contact Us

Publication : The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3.

First Author  Chung S Year  2007
Journal  Brain Res Volume  1140
Pages  120-31 PubMed ID  17447264
Mgi Jnum  J:121113 Mgi Id  MGI:3709251
Doi  10.1016/j.brainres.2006.01.100 Citation  Chung S, et al. (2007) The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3. Brain Res 1140:120-31
abstractText  Conventional kinesin is a motor protein complex including two heavy chains and two light chains (KLC). Junco et al. (Junco, A., Bhullar, B., Tarnasky, H.A. and van der Hoorn, F.A., 2001. Kinesin light-chain KLC3 expression in testis is restricted to spermatids. Biol. Reprod. 64, 1320-1330). recently reported the isolation of a novel KLC gene, klc3. In the present report, immunohistochemistry has been used to characterize the expression of KLC3 in the cerebella of normal and scrambler (scm) mutant mice. In cryostat sections through the cerebellum of the normal adult mouse immunoperoxidase stained for KLC3, reaction product is deposited in the nuclei and somata of deep cerebellar nuclear neurons. No other structures are stained in the cerebellum. Strong and specific KLC3 expression is observed in the adult cerebellum in all three major cerebellar nuclei--medial, interposed, and lateral. Double immunofluorescence studies reveal that KLC3 immunoreactivity is colocalized with both endosomes and GW bodies. KLC3 immunohistochemistry has been exploited to study the organization of the cerebellar nuclei in scrambler mice, in which disruption of the mdab1 gene results in severe foliation defects due to Purkinje cell ectopia, with most Purkinje cells clumped in centrally located clusters. Despite the severe failure of Purkinje cell migration, the cerebellar nuclei appear normal in scrambler mutant mice, suggesting that their topography is dependent neither on normal Purkinje cell positioning nor the Reelin signaling pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression