First Author | Ta VB | Year | 2011 |
Journal | Leukemia | Volume | 25 |
Issue | 1 | Pages | 48-56 |
PubMed ID | 21030983 | Mgi Jnum | J:167638 |
Mgi Id | MGI:4868666 | Doi | 10.1038/leu.2010.246 |
Citation | Ta VB, et al. (2011) Pre-B-cell leukemias in Btk/Slp65-deficient mice arise independently of ongoing V(D)J recombination activity. Leukemia 25(1):48-56 |
abstractText | The adapter protein Slp65 and Bruton's tyrosine kinase (Btk) are key components of the precursor-B (pre-B) cell receptor (pre-BCR) signaling pathway. Slp65-deficient mice spontaneously develop pre-B-cell leukemia, expressing high levels of the pre-BCR on their cell surface. As leukemic Slp65-deficient pre-B cells express the recombination activating genes (Rag)1 and Rag2, and manifest ongoing immunoglobulin (Ig) light-chain rearrangement, it has been hypothesized that deregulated recombinase activity contributes to malignant transformation. In this report, we investigated whether Rag-induced DNA damage is involved in oncogenic transformation of Slp65-deficient B cells. We employed Btk/Slp65 double-deficient mice carrying an autoreactive 3-83mudelta BCR transgene. When developing B cells in their bone marrow express this BCR, the V(D)J recombination machinery will be activated, allowing for secondary Ig light-chain gene rearrangements to occur. This phenomenon, called receptor editing, will rescue autoreactive B cells from apoptosis. We observed that 3-83mudelta transgenic Btk/Slp65 double-deficient mice developed B-cell leukemias expressing both the 3-83mudelta BCR and the pre-BCR components lambda5/VpreB. Importantly, such leukemias were found at similar frequencies in mice concomitantly deficient for Rag1 or the non-homologous end-joining factor DNA-PKcs. We therefore conclude that malignant transformation of Btk/Slp65 double-deficient pre-B cells is independent of deregulated V(D)J recombination activity. |