First Author | Wang ZY | Year | 2024 |
Journal | Cell Mol Gastroenterol Hepatol | Volume | 17 |
Issue | 4 | Pages | 539-551 |
PubMed ID | 38122985 | Mgi Jnum | J:355529 |
Mgi Id | MGI:7719097 | Doi | 10.1016/j.jcmgh.2023.12.004 |
Citation | Wang ZY, et al. (2024) Apolipoprotein A-1 Accelerated Liver Regeneration Through Regulating Autophagy Via AMPK-ULK1 Pathway. Cell Mol Gastroenterol Hepatol 17(4):539-551 |
abstractText | BACKGROUND & AIMS: Apolipoprotein A-1 (ApoA-1), the main apolipoprotein of high-density lipoprotein, has been well studied in the area of lipid metabolism and cardiovascular diseases. In this project, we clarify the function and mechanism of ApoA-1 in liver regeneration. METHODS: Seventy percent of partial hepatectomy was applied in male ApoA-1 knockout mice and wild-type mice to investigate the effects of ApoA-1 on liver regeneration. D-4F (ApoA-1 mimetic peptide), autophagy activator, and AMPK activator were used to explore the mechanism of ApoA-1 on liver regeneration. RESULTS: We demonstrated that ApoA-1 levels were highly expressed during the early stage of liver regeneration. ApoA-1 deficiency greatly impaired liver regeneration after hepatectomy. Meanwhile, we found that ApoA-1 deficiency inhibited autophagy during liver regeneration. The activation of autophagy protected against ApoA-1 deficiency in inhibiting liver regeneration. Furthermore, ApoA-1 deficiency impaired autophagy through AMPK-ULK1 pathway, and AMPK activation significantly improved liver regeneration. The administration of D-4F could accelerated liver regeneration after hepatectomy. CONCLUSIONS: These findings suggested that ApoA-1 played an essential role in liver regeneration through promoting autophagy in hepatocytes via AMPK-ULK1 pathway. Our findings enrich the understanding of the underlying mechanism of liver regeneration and provide a potential therapeutic strategy for liver injury. |