|  Help  |  About  |  Contact Us

Publication : Scavenger receptor BI and high-density lipoprotein regulate thymocyte apoptosis in sepsis.

First Author  Guo L Year  2014
Journal  Arterioscler Thromb Vasc Biol Volume  34
Issue  5 Pages  966-75
PubMed ID  24603680 Mgi Jnum  J:222905
Mgi Id  MGI:5645879 Doi  10.1161/ATVBAHA.113.302484
Citation  Guo L, et al. (2014) Scavenger receptor BI and high-density lipoprotein regulate thymocyte apoptosis in sepsis. Arterioscler Thromb Vasc Biol 34(5):966-75
abstractText  OBJECTIVE: Thymocyte apoptosis is a major event in sepsis; however, how this process is regulated remains poorly understood. APPROACH AND RESULTS: Septic stress induces glucocorticoids production which triggers thymocyte apoptosis. Here, we used scavenger receptor BI (SR-BI)-null mice, which are completely deficient in inducible glucocorticoids in sepsis, to investigate the regulation of thymocyte apoptosis in sepsis. Cecal ligation and puncture induced profound thymocyte apoptosis in SR-BI(+/+) mice, but no thymocyte apoptosis in SR-BI(-/-) mice because of lack of inducible glucocorticoids. Unexpectedly, supplementation of glucocorticoids only partly restored thymocyte apoptosis in SR-BI(-/-) mice. We demonstrated that high-density lipoprotein (HDL) is a critical modulator for thymocyte apoptosis. SR-BI(+/+) HDL significantly enhanced glucocorticoid-induced thymocyte apoptosis, but SR-BI(-/-) HDL had no such activity. Further study revealed that SR-BI(+/+) HDL modulates glucocorticoid-induced thymocyte apoptosis via promoting glucocorticoid receptor translocation, but SR-BI(-/-) HDL loses such regulatory activity. To understand why SR-BI(-/-) HDL loses its regulatory activity, we analyzed HDL cholesterol contents. There was 3-fold enrichment of unesterified cholesterol in SR-BI(-/-) HDL compared with SR-BI(+/+) HDL. Normalization of unesterified cholesterol in SR-BI(-/-) HDL by probucol administration or lecithin cholesteryl acyltransferase expression restored glucocorticoid-induced thymocyte apoptosis, and incorporating unesterified cholesterol into SR-BI(+/+) HDL rendered SR-BI(+/+) HDL dysfunctional. Using lckCre-GR(fl/fl) mice in which thymocytes lack cecal ligation and puncture-induced thymocyte apoptosis, we showed that lckCre-GR(fl/fl) mice were significantly more susceptible to cecal ligation and puncture-induced septic death than GR(fl/fl) control mice, suggesting that glucocorticoid-induced thymocyte apoptosis is required for protection against sepsis. CONCLUSIONS: The findings in this study reveal a novel regulatory mechanism of thymocyte apoptosis in sepsis by SR-BI and HDL.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

0 Expression