First Author | Duivenvoorden I | Year | 2005 |
Journal | Diabetes | Volume | 54 |
Issue | 3 | Pages | 664-71 |
PubMed ID | 15734841 | Mgi Jnum | J:105136 |
Mgi Id | MGI:3614214 | Doi | 10.2337/diabetes.54.3.664 |
Citation | Duivenvoorden I, et al. (2005) Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 54(3):664-71 |
abstractText | Our aim was to study whether the absence of apolipoprotein (apo) C3, a strong inhibitor of lipoprotein lipase (LPL), accelerates the development of obesity and consequently insulin resistance. Apoc3(-/-) mice and wild-type littermates were fed a high-fat (46 energy %) diet for 20 weeks. After 20 weeks of high-fat feeding, apoc3(-/-) mice showed decreased plasma triglyceride levels (0.11 +/- 0.02 vs. 0.29 +/- 0.04 mmol, P < 0.05) and were more obese (42.8 +/- 3.2 vs. 35.2 +/- 3.3 g; P < 0.05) compared with wild-type littermates. This increase in body weight was entirely explained by increased body lipid mass (16.2 +/- 5.9 vs. 10.0 +/- 1.8 g; P < 0.05). LPL-dependent uptake of triglyceride-derived fatty acids by adipose tissue was significantly higher in apoc3(-/-) mice. LPL-independent uptake of albumin-bound fatty acids did not differ. It is interesting that whole-body insulin sensitivity using hyperinsulinemic-euglycemic clamps was decreased by 43% and that suppression of endogenous glucose production was decreased by 25% in apoc3(-/-) mice compared with control mice. Absence of apoC3, the natural LPL inhibitor, enhances fatty acid uptake from plasma triglycerides in adipose tissue, which leads to higher susceptibility to diet-induced obesity followed by more severe development of insulin resistance. Therefore, apoC3 is a potential target for treatment of obesity and insulin resistance. |