First Author | Jiang J | Year | 1999 |
Journal | Br J Pharmacol | Volume | 128 |
Issue | 3 | Pages | 637-46 |
PubMed ID | 10516643 | Mgi Jnum | J:59721 |
Mgi Id | MGI:1352091 | Doi | 10.1038/sj.bjp.0702855 |
Citation | Jiang J, et al. (1999) Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. Br J Pharmacol 128(3):637-46 |
abstractText | 1. Mice lacking the apolipoprotein E and low density lipoprotein receptor genes (E degrees xLDLR degrees ) develop atherosclerosis. The aim of this study was to investigate changes in endothelium-dependent vasodilation and vasomotion in thoracic aortic rings of E degrees xLDLR degrees mice. 2. K+-induced contractions of the aorta from E degrees xLDLR degrees mice were stronger than those from control mice. The sensitivity of E degrees xLDLR degrees aorta to phenylephrine (PE) was decreased but the maximal contractions were increased. Acetylcholine-induced, but not sodium nitroprusside-induced, relaxations of E degrees xLDLR degrees aorta was decreased. 3. PE induced rhythmic activity in both E degrees xLDLR degrees and control aorta but the amplitude was larger in E degrees xLDLR degrees than in control mice. PE-induced rhythmic activity in both E degrees xLDLR degrees and control aorta was augmented by increase in extracellular Ca2+-concentration, but was abolished by removal of the endothelium, the nitric oxide (NO) synthase inhibitor N-nitro-L-arginine methyl ester, the guanylate cyclase inhibitor LY-83583, high K+ solution and ryanodine. 4. 4-Aminopyridine, a voltage-dependent potassium (KV) channel blocker, increased basal tension and induced rhythmic activity in E degrees xLDLR degrees aorta but not in control aorta. 5. The Ca2+-activated potassium (KCa) channel blockers tetraethylammonium and charybdotoxin abolished PE-induced rhythmic activity in E degrees xLDLR degrees aorta. 6. In conclusion, opening of Kv channels in E degrees xLDLR degrees mice aorta is reduced and it is susceptible to be depolarized resulting in Ca2+ entry. The vascular smooth muscle is then dependent on compensatory mechanisms to limit Ca2+-entry. Such mechanisms may be decreased sensitivity to vasoconstrictors, or increased opening of KCa channels by NO via a cyclic GMP-dependent mechanism. |