First Author | Taketa K | Year | 2008 |
Journal | J Biol Chem | Volume | 283 |
Issue | 15 | Pages | 9852-62 |
PubMed ID | 18208815 | Mgi Jnum | J:135237 |
Mgi Id | MGI:3790894 | Doi | 10.1074/jbc.M703318200 |
Citation | Taketa K, et al. (2008) Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem 283(15):9852-62 |
abstractText | It has been reported that oxidized low density lipoprotein (Ox-LDL) can activate both peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma. However, the detailed mechanisms of Ox-LDL-induced PPARalpha and PPARgamma activation are not fully understood. In the present study, we investigated the effect of Ox-LDL on PPARalpha and PPARgamma activation in macrophages. Ox-LDL, but not LDL, induced PPARalpha and PPARgamma activation in a dose-dependent manner. Ox-LDL transiently induced cyclooxygenase-2 (COX-2) mRNA and protein expression, and COX-2 specific inhibition by NS-398 or meloxicam or small interference RNA of COX-2 suppressed Ox-LDL-induced PPARalpha and PPARgamma activation. Ox-LDL induced phosphorylation of ERK1/2 and p38 MAPK, and ERK1/2 specific inhibition abrogated Ox-LDL-induced COX-2 expression and PPARalpha and PPARgamma activation, whereas p38 MAPK-specific inhibition had no effect. Ox-LDL decreased the amounts of intracellular long chain fatty acids, such as arachidonic, linoleic, oleic, and docosahexaenoic acids. On the other hand, Ox-LDL increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) level through ERK1/2-dependent overexpression of COX-2. Moreover, 15d-PGJ(2) induced both PPARalpha and PPARgamma activation. Furthermore, COX-2 and 15d-PGJ(2) expression and PPAR activity were increased in atherosclerotic lesions of apoE-deficient mice. Finally, we investigated the involvement of PPARalpha and PPARgamma on Ox-LDL-induced mRNA expression of ATP-binding cassette transporter A1 and monocyte chemoattractant protein-1. Interestingly, specific inhibition of PPARalpha and PPARgamma suppressed Ox-LDL-induced ATP-binding cassette transporter A1 mRNA expression and enhanced Ox-LDL-induced monocyte chemoattractant protein-1 mRNA expression. In conclusion, Ox-LDL-induced increase in 15d-PGJ(2) level through ERK1/2-dependent COX-2 expression is one of the mechanisms of PPARalpha and PPARgamma activation in macrophages. These effects of Ox-LDL may control excess atherosclerotic progression. |