|  Help  |  About  |  Contact Us

Publication : Effect of the reduction of superoxide dismutase 1 and 2 or treatment with alpha-tocopherol on tumorigenesis in Atm-deficient mice.

First Author  Erker L Year  2006
Journal  Free Radic Biol Med Volume  41
Issue  4 Pages  590-600
PubMed ID  16863992 Mgi Jnum  J:111281
Mgi Id  MGI:3653552 Doi  10.1016/j.freeradbiomed.2006.04.032
Citation  Erker L, et al. (2006) Effect of the reduction of superoxide dismutase 1 and 2 or treatment with alpha-tocopherol on tumorigenesis in Atm-deficient mice. Free Radic Biol Med 41(4):590-600
abstractText  Atm-deficient mice, a cancer-prone model of the human disease ataxia-telangiectasia, display increased levels of oxidative stress and damage. Chronic treatment of these mice with the nitroxide antioxidant and superoxide dismutase (SOD) mimetic Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) resulted in an increased latency to tumorigenesis. We initially hypothesized that the chemopreventative effect of Tempol was due to its SOD mimetic activity reducing cellular oxidative stress and damage. However, it is also possible that the chemopreventative effect of Tempol results from mechanisms other than directly reducing superoxide radical-induced oxidative stress and damage. To help distinguish between these possibilities, we attempted to genetically increase oxidative stress in Atm-deficient mice by either removing cytosolic Sod1 or reducing mitochondrial Sod2, or we attempted to decrease oxidative stress by treatment of Atm-deficient mice with alpha-tocopherol. Surprisingly, we found that reducing both Atm and Sod1 or Atm and Sod2 did not shorten latency to tumorigenesis or significantly affect life span. Furthermore, continuous administration of alpha-tocopherol did not affect latency to thymic lymphomas. Thus, genetically reducing Sod in Atm-deficient mice or treatment with alpha-tocopherol had no effect on survival or tumorigenesis, suggesting that the chemopreventative effect of Tempol may be at least partially independent of its effects on reducing oxidative damage and stress.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression