First Author | Barnes MJ | Year | 2010 |
Journal | J Immunol | Volume | 184 |
Issue | 7 | Pages | 3743-54 |
PubMed ID | 20190135 | Mgi Jnum | J:160090 |
Mgi Id | MGI:4453407 | Doi | 10.4049/jimmunol.0903164 |
Citation | Barnes MJ, et al. (2010) Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice. J Immunol 184(7):3743-54 |
abstractText | Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosourea-induced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4(+) T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-kappaB, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4(+) T cells adopt a CD44(high)CD62L(low)CD69(low) phenotype and show reduced IL-7ralpha expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptor-induced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis. |