|  Help  |  About  |  Contact Us

Publication : beta-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the alpha- and gamma-adducin subunits.

First Author  Porro F Year  2010
Journal  Genes Brain Behav Volume  9
Issue  1 Pages  84-96
PubMed ID  19900187 Mgi Jnum  J:169203
Mgi Id  MGI:4940004 Doi  10.1111/j.1601-183X.2009.00537.x
Citation  Porro F, et al. (2010) beta-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the alpha- and gamma-adducin subunits. Genes Brain Behav 9(1):84-96
abstractText  Adducins are a family of proteins found in cytoskeleton junctional complexes, which bind and regulate actin filaments and actin-spectrin complexes. In brain, adducin is expressed at high levels and is identified as a constituent of synaptic structures, such as dendritic spines and growth cones of neurons. Adducin-induced changes in dendritic spines are involved in activity-dependent synaptic plasticity processes associated with learning and memory, but the mechanisms underlying these functions remain to be elucidated. Here, beta-adducin knockout (KO) mice were used to obtain a deeper insight into the role of adducin in these processes. We showed that beta-adducin KO mice showed behavioral, motor coordination and learning deficits together with an altered expression and/or phosphorylation levels of alpha-adducin and gamma-adducin. We found that beta-adducin KO mice exhibited deficits in learning and motor performances associated with an impairment of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus. These effects were accompanied by a decrease in phosphorylation of adducin, a reduction in alpha-adducin expression levels and upregulation of gamma-adducin in hippocampus, cerebellum and neocortex of mutant mice. In addition, we found that the mRNA encoding beta-adducin is also located in dendrites, where it may participate in the fine modulation of LTP and LTD. These results strongly suggest coordinated expression and phosphorylation of adducin subunits as a key mechanism underlying synaptic plasticity, motor coordination performance and learning behaviors.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression