First Author | Ye P | Year | 2013 |
Journal | J Clin Invest | Volume | 123 |
Issue | 5 | Pages | 2317-31 |
PubMed ID | 23585475 | Mgi Jnum | J:201455 |
Mgi Id | MGI:5514123 | Doi | 10.1172/JCI67356 |
Citation | Ye P, et al. (2013) GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency. J Clin Invest 123(5):2317-31 |
abstractText | Heterozygous loss-of-function SMAD3 (Mothers against decapentaplegic homolog 3) mutations lead to aneurysm-osteoarthritis syndrome (AOS). In the present study, we found that mice lacking Smad3 had a vascular phenotype similar to AOS, marked by the progressive development of aneurysms. These aneurysms were associated with various pathological changes in transmural inflammatory cell infiltration. Bone marrow transplants from Smad3-/- mice induced aortitis and aortic root dilation in irradiated WT recipient mice. Transplantation of CD4+ T cells from Smad3-/- mice also induced aortitis in Smad3+/+ recipient mice, while depletion of CD4+ T cells in Smad3-/- mice reduced the infiltration of inflammatory cells in the aortic root. Furthermore, IFN-gamma deficiency increased, while IL-17 deficiency decreased, disease severity in Smad3+/- mice. Cytokine secretion was measured using a cytokine quantibody array, and Smad3-/- CD4+ T cells secreted more GM-CSF than Smad3+/+ CD4+ T cells. GM-CSF induced CD11b+Gr-1+Ly-6Chi inflammatory monocyte accumulation in the aortic root, but administration of anti-GM-CSF mAb to Smad3-/- mice resulted in significantly less inflammation and dilation in the aortic root. We also identified a missense mutation (c.985A>G) in a family of thoracic aortic aneurysms. Intense inflammatory infiltration and GM-CSF expression was observed in aortas specimens of these patients, suggesting that GM-CSF is potentially involved in the development of AOS. |