| First Author | Walsh ER | Year | 2012 |
| Journal | Proc Natl Acad Sci U S A | Volume | 109 |
| Issue | 40 | Pages | 16276-81 |
| PubMed ID | 22988104 | Mgi Jnum | J:190111 |
| Mgi Id | MGI:5448089 | Doi | 10.1073/pnas.1209372109 |
| Citation | Walsh ER, et al. (2012) Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc Natl Acad Sci U S A 109(40):16276-81 |
| abstractText | Toll-like receptor 7 (Tlr7) has been linked to systemic lupus disease incidence in humans and mice, but how TLR7 potentiates autoimmunity is unclear. We used a Tlr7 transgenic (tg) mouse model to investigate the cellular and molecular events required to induce spontaneous autoimmunity through increased TLR7 activity. We determined that Tlr7 exerts B-cell-intrinsic effects in promoting spontaneous germinal center (GC) and plasmablast B-cell development, and that these B-cell subsets are dependent on T-cell-derived signals through CD40L and SLAM-associated protein (SAP), but not IL-17. Antigen specificity also factored into TLR7-induced disease, as both a restricted T cell receptor (TCR) specificity and MHC haplotype H2(k/k) protected Tlr7tg mice from spontaneous lymphocyte activation and autoantibody production. Inflammatory myeloid cell expansion and autoimmunity did not develop in Tlr7tgIgH(-/-) mice, suggesting either that spontaneous TLR7 activation does not occur in dendritic cells, or, if it does occur, cannot drive these events in the absence of B-cell aid. These data indicate that autoimmune disease in Tlr7tg mice is contingent upon B cells receiving stimulation both through innate pathways and T-cell-derived signals and suggest a codependent relationship between B cells and T cells in the development of autoimmunity. |