|  Help  |  About  |  Contact Us

Publication : Antigen Density Dictates Immune Responsiveness following Red Blood Cell Transfusion.

First Author  Arthur CM Year  2017
Journal  J Immunol Volume  198
Issue  7 Pages  2671-2680
PubMed ID  28250159 Mgi Jnum  J:252340
Mgi Id  MGI:5927006 Doi  10.4049/jimmunol.1601736
Citation  Arthur CM, et al. (2017) Antigen Density Dictates Immune Responsiveness following Red Blood Cell Transfusion. J Immunol 198(7):2671-2680
abstractText  Although RBC transfusion can result in the development of anti-RBC alloantibodies that increase the probability of life-threatening hemolytic transfusion reactions, not all patients generate anti-RBC alloantibodies. However, the factors that regulate immune responsiveness to RBC transfusion remain incompletely understood. One variable that may influence alloantibody formation is RBC alloantigen density. RBC alloantigens exist at different densities on the RBC surface and likewise exhibit distinct propensities to induce RBC alloantibody formation. However, although distinct alloantigens reside on the RBC surface at different levels, most alloantigens also represent completely different structures, making it difficult to separate the potential impact of differences in Ag density from other alloantigen features that may also influence RBC alloimmunization. To address this, we generated RBCs that stably express the same Ag at different levels. Although exposure to RBCs with higher Ag levels induces a robust Ab response, RBCs bearing low Ag levels fail to induce RBC alloantibodies. However, exposure to low Ag-density RBCs is not without consequence, because recipients subsequently develop Ag-specific tolerance. Low Ag-density RBC-induced tolerance protects higher Ag-density RBCs from immune-mediated clearance, is Ag specific, and occurs through the induction of B cell unresponsiveness. These results demonstrate that Ag density can potently impact immune outcomes following RBC transfusion and suggest that RBCs with altered Ag levels may provide a unique tool to induce Ag-specific tolerance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression