|  Help  |  About  |  Contact Us

Publication : Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells.

First Author  Notley CA Year  2011
Journal  J Immunol Volume  186
Issue  8 Pages  4967-72
PubMed ID  21383247 Mgi Jnum  J:172467
Mgi Id  MGI:5007870 Doi  10.4049/jimmunol.1003021
Citation  Notley CA, et al. (2011) Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells. J Immunol 186(8):4967-72
abstractText  The clearance of dying cells is vital for re-establishing tolerance during inflammation and has potent immunoregulatory consequences. Because natural IgM plays a key role in the removal of apoptotic cells, we investigated whether the immune modulatory properties of apoptotic cells depended on its presence. Using an Ab-independent, Ag-induced model of inflammatory arthritis, we tested whether natural IgM is essential for the arthritis-suppressing properties of apoptotic cells. Whereas administration of apoptotic cells reduced joint inflammation and damage in normal mice accompanied by suppression of the Th17 response, no protection was afforded in secreted IgM-deficient (Smu(-)) mice. The enhanced production of IL-10 by T cells from draining lymph nodes and splenic marginal zone B cells, driven by the infusion of apoptotic cells, was abrogated in the absence of natural IgM. Apoptotic cells were present shortly after administration in the splenic marginal zone, but their removal was substantially delayed in the absence of natural IgM. Incubation of apoptotic cells with natural IgM in vitro restored their arthritis-suppressing properties in Smu(-) mice. Moreover, these IgM-coated apoptotic cells were cleared rapidly after injection from the spleens of Smu(-) mice. Our results demonstrate that natural IgM is a critical factor in a chain of events triggered by the administration of apoptotic cells that promote IL-10-secreting B and T cells and restrain the development of inflammation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression