|  Help  |  About  |  Contact Us

Publication : TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS.

First Author  Monlish DA Year  2020
Journal  Exp Hematol Volume  88
Pages  42-55 PubMed ID  32652111
Mgi Jnum  J:299870 Mgi Id  MGI:6490758
Doi  10.1016/j.exphem.2020.07.001 Citation  Monlish DA, et al. (2020) TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS. Exp Hematol 88:42-55
abstractText  Toll-like receptor 2 (TLR2) expression is increased on hematopoietic stem and progenitor cells (HSPCs) of patients with myelodysplastic syndromes (MDS), and enhanced TLR2 signaling is thought to contribute to MDS pathogenesis. Notably, TLR2 heterodimerizes with TLR1 or TLR6, and while high TLR2 is associated with lower-risk disease, high TLR6, but not TLR1, correlates with higher-risk disease. This raises the possibility of heterodimer-specific effects of TLR2 signaling in MDS, and in the work described here, we tested the effects of specific modulation of TLR1/2 versus TLR2/6 signaling on premalignant HSPCs. Indeed, chronic stimulation of TLR2/6, but not TLR1/2, accelerates leukemic transformation in the NHD13 mouse model of MDS, and conversely, loss of TLR6, but not TLR1, slows this process. TLR2/6 stimulation expands premalignant HSPCs, and chimeric mouse studies revealed that cell-autonomous signaling contributes to this expansion. Finally, TLR2/6 stimulation is associated with an enrichment of Myc and mTORC1 activities. While Myc inhibition partially suppressed the TLR2/6 agonist-mediated expansion of premalignant HSPCs, inhibition of mTORC1 exacerbated it, suggesting that these pathways play opposite roles in regulating the effects of TLR2/6 ligation on HSPCs. Together, these data reveal heterodimer-specific effects of TLR2 signaling on premalignant HSPCs, with TLR2/6 signaling promoting their expansion and leukemic transformation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

0 Expression