|  Help  |  About  |  Contact Us

Publication : Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development.

First Author  Igietseme JU Year  2000
Journal  J Immunol Volume  164
Issue  8 Pages  4212-9
PubMed ID  10754317 Mgi Jnum  J:123433
Mgi Id  MGI:3718297 Doi  10.4049/jimmunol.164.8.4212
Citation  Igietseme JU, et al. (2000) Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J Immunol 164(8):4212-9
abstractText  A new paradigm for designing vaccines against certain microbial pathogens, including Chlamydia trachomatis, is based on the induction of local mucosal Th1 response. IL-10 is an anti-inflammatory cytokine that exerts negative immunoregulatory influence on Th1 response. This study investigated whether biochemical modulation of endogenous IL-10 expression at the level of APCs is a practical strategy for enhancing the specific Th1 response against pathogens controlled by Th1 immunity. The results revealed that the high resistance of genetically engineered IL-10-/- (IL-10KO) mice to genital chlamydial infection is a function of the predilection of their APCs to rapidly and preferentially activate a high Th1 response. Thus, in microbiological analysis, IL-10KO mice suffered a shorter duration of infection, less microbial burden, and limited ascending infection than immunocompetent wild-type mice. Also, IL-10KO were resistant to reinfection after 8 wk of the primary infection. Cellular and molecular immunologic evaluation indicated that IL-10KO mice induced greater frequency of chlamydial-specific Th1 response following C. trachomatis infection. Moreover, IL-10KO APCs or antisense IL-10 oligonucleotide-treated wild-type APCs were potent activators of Th1 response from naive or immune T cells. Furthermore, both Ag-pulsed dendritic cells from IL-10KO mice and IL-10 antisense-treated dendritic cells from wild-type mice were efficient cellular vaccines in adoptive immunotherapeutic vaccination against genital chlamydial infection. These findings may furnish a novel immunotherapeutic strategy for boosting the Th1 response against T cell-controlled pathogens and tumors, using IL-10-deficient APCs as vaccine delivery agents.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression