First Author | de Nooijer R | Year | 2009 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 29 |
Issue | 2 | Pages | 188-94 |
PubMed ID | 19095996 | Mgi Jnum | J:163799 |
Mgi Id | MGI:4829756 | Doi | 10.1161/ATVBAHA.108.181578 |
Citation | de Nooijer R, et al. (2009) Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Biol 29(2):188-94 |
abstractText | OBJECTIVE: A dysbalance of proteases and their inhibitors is instrumental in remodeling of atherosclerotic plaques. One of the proteases implicated in matrix degradation is cathepsin-S (CatS). To address its role in advanced lesion composition, we generated chimeric LDLr(-/-) mice deficient in leukocyte CatS by transplantation with CatS(-/-)xLDLr(-/-) or with LDLr(-/-) bone marrow and administered a high-fat diet. METHODS AND RESULTS: No difference in aortic root lesion size could be detected between CatS(+/+) and CatS(-/-) chimeras. However, leukocyte CatS deficiency markedly changed plaque morphology and led to a dramatic reduction in necrotic core area by 77% and an abundance of large foam cells. Plaques of CatS(-/-) chimeras contained 17% more macrophages, 62% less SMCs, and 33% less intimal collagen. The latter two could be explained by a reduced number of elastic lamina fractures. Moreover, macrophage apoptosis was reduced by 60% with CatS deficiency. In vitro, CatS was found to be involved in cholesterol metabolism and in macrophage apoptosis in a collagen and fibronectin matrix. CONCLUSIONS: Leukocyte CatS deficiency results in considerably altered plaque morphology, with smaller necrotic cores, reduced apoptosis, and decreased SMC content and collagen deposition and may thus be critical in plaque stability. |