|  Help  |  About  |  Contact Us

Publication : Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice.

First Author  Salerno AG Year  2019
Journal  Biochem J Volume  476
Issue  24 Pages  3769-3789
PubMed ID  31803904 Mgi Jnum  J:282801
Mgi Id  MGI:6384037 Doi  10.1042/BCJ20190543
Citation  Salerno AG, et al. (2019) Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice. Biochem J 476(24):3769-3789
abstractText  The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression