|  Help  |  About  |  Contact Us

Publication : High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice.

First Author  Rinninger F Year  2014
Journal  J Lipid Res Volume  55
Issue  9 Pages  1914-24
PubMed ID  24954421 Mgi Jnum  J:214973
Mgi Id  MGI:5604311 Doi  10.1194/jlr.M048819
Citation  Rinninger F, et al. (2014) High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. J Lipid Res 55(9):1914-24
abstractText  The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein ((125)I) and in the cholesteryl ester (CE) moiety ([(3)H]). The metabolism of (125)I-/[(3)H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([(3)H]). In contrast, in LDLR(-/-) mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR(-/-) mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR(-/-) mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression