|  Help  |  About  |  Contact Us

Publication : Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets.

First Author  Tang WH Year  2014
Journal  Circulation Volume  129
Issue  15 Pages  1598-609
PubMed ID  24474649 Mgi Jnum  J:219307
Mgi Id  MGI:5620079 Doi  10.1161/CIRCULATIONAHA.113.005224
Citation  Tang WH, et al. (2014) Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation 129(15):1598-609
abstractText  BACKGROUND: Platelet abnormalities are well-recognized complications of diabetes mellitus. Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in diabetes mellitus. The molecular pathway for hyperglycemia-induced mitochondrial dysfunction in platelets in diabetes mellitus is unknown. METHODS AND RESULTS: Using both human and humanized mouse models, we report that hyperglycemia-induced aldose reductase activation and subsequent reactive oxygen species production lead to increased p53 phosphorylation (Ser15), which promotes mitochondrial dysfunction, damage, and rupture by sequestration of the antiapoptotic protein Bcl-xL. In a glucose dose-dependent manner, severe mitochondrial damage leads to loss of mitochondrial membrane potential and platelet apoptosis (cytochrome c release, caspase 3 activation, and phosphatidylserine exposure). Although platelet hyperactivation, mitochondrial dysfunction, aldose reductase activation, reactive oxygen species production, and p53 phosphorylation are all induced by hyperglycemia, we demonstrate that platelet apoptosis and hyperactivation are 2 distinct states that depend on the severity of the hyperglycemia and mitochondrial damage. Combined, both lead to increased thrombus formation in a mouse blood stasis model. CONCLUSIONS: Aldose reductase contributes to diabetes-mediated mitochondrial dysfunction and damage through the activation of p53. The degree of mitochondrial dysfunction and damage determines whether hyperactivity (mild damage) or apoptosis (severe damage) will ensue. These signaling components provide novel therapeutic targets for thrombotic complications in diabetes mellitus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression