First Author | Romeo GR | Year | 2007 |
Journal | Circ Res | Volume | 101 |
Issue | 4 | Pages | 357-67 |
PubMed ID | 17615372 | Mgi Jnum | J:140294 |
Mgi Id | MGI:3813212 | Doi | 10.1161/CIRCRESAHA.107.151399 |
Citation | Romeo GR, et al. (2007) Attenuated expression of profilin-1 confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 101(4):357-67 |
abstractText | Atherosclerosis-related events are a major cause of morbidity and death worldwide, but the mechanisms underlying atherogenesis are not fully understood. We showed in previous studies that the actin-binding protein profilin-1 (pfn) was upregulated in atherosclerotic plaques and in endothelial cells (ECs) treated with oxidized low-density lipoproteins (oxLDL). The present study addressed the role of pfn in atheroma formation. To this end, mice with heterozygous deficiency of pfn, Pfn(+/-), were crossed with Ldlr(-/-) mice. After 2 months under a 1.25% cholesterol atherogenic diet, Pfn(+/-)Ldlr(-/-) (PfnHet) exhibited a significant reduction in lesion burden compared with Ldlr(-/-) control mice (PfnWT), whereas total cholesterol and triglyceride levels were similar in the 2 groups. Relevant atheroprotective changes were identified in PfnHet. When compared with PfnWT, aortas from PfnHet mice showed preserved endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO)-dependent signaling, and reduced vascular cell adhesion molecule (VCAM)-1 expression and macrophage accumulation at lesion-prone sites. Similarly, knockdown of pfn in cultured aortic ECs was protective against endothelial dysfunction triggered by oxLDL. Finally, bone marrow-derived macrophages from PfnHet showed blunted internalization of oxLDL and oxLDL-induced inflammation. These studies demonstrate that pfn levels modulate processes critical for early atheroma formation and suggest that pfn heterozygosity confers atheroprotection through combined endothelial- and macrophage-dependent mechanisms. |