First Author | Mandik-Nayak L | Year | 2001 |
Journal | J Immunol | Volume | 167 |
Issue | 4 | Pages | 1920-8 |
PubMed ID | 11489971 | Mgi Jnum | J:70819 |
Mgi Id | MGI:2148356 | Doi | 10.4049/jimmunol.167.4.1920 |
Citation | Mandik-Nayak L, et al. (2001) Signaling Through TNF Receptor p55 in TNF-alpha-Deficient Mice Alters the CXCL13/CCL19/CCL21 Ratio in the Spleen and Induces Maturation and Migration of Anergic B Cells into the B Cell Follicle. J Immunol 167(4):1920-8 |
abstractText | The organization of secondary lymphoid tissues into distinct T and B cell compartments supports proper regulation of an immune response to foreign Ags. In the splenic white pulp, this compartmentalization is also thought to be important in the maintenance of B cell tolerance. Using lymphotoxin-alpha-(LT-alpha)-, TNF-alpha-, or TNFRp55-deficient mice, all with disrupted splenic architecture, we tested whether normal T/B segregation and/or intact follicular structure are necessary for the maintenance of anti-dsDNA B cell anergy. This study demonstrates that anti-dsDNA B cells remain tolerant in LT-alpha(-/-), TNF-alpha(-/-), and TNFRp55(-/-) mice; however, TNF-alpha or a TNF-alpha-dependent factor is required for their characteristic positioning to the T/B interface. Providing a TNF-alpha signal in TNF-alpha(-/-) mice by systemic administration of an agonist anti-TNFRp55 mAb induces the maturation of the anti-dsDNA B cells and their movement away from the T cell area toward the B cell area. Additionally, the agonist Ab induces changes in the follicular environment, including FDC clustering, up-regulation of the CXC chemokine ligand CXCL13, and down-regulation of the CC chemokine ligands CCL19 and CCL21. Therefore, this study suggests that a balance between B and T cell tropic chemokine signals may be an important mechanism for positioning anergic B cells at the T/B interface of the splenic white pulp. |