|  Help  |  About  |  Contact Us

Publication : Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3.

First Author  Champion HC Year  2004
Journal  Circ Res Volume  94
Issue  5 Pages  657-63
PubMed ID  14752030 Mgi Jnum  J:97591
Mgi Id  MGI:3575874 Doi  10.1161/01.RES.0000119323.79644.20
Citation  Champion HC, et al. (2004) Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 94(5):657-63
abstractText  Nitric oxide (NO) functions principally as a diffusible paracrine effector. The exception is in cardiomyocytes where both NO synthases (NOS) and target proteins coexist, allowing NO to work in an autocrine/intracrine fashion. However, the most abundant myocyte isoform (NOS3) is far more expressed in vascular endothelium; thus, the in vivo contribution of myocyte-NOS3 remains less clear. The present study tested this role by transfecting whole hearts of NOS3-null (NOS3(-/-)) mice with adenovirus-expressing NOS3 coupled to a alpha-MHC promoter (AdV(NOS3)), comparing results to hearts transfected with marker-gene beta-galactosidase (AdVbeta(gal)). Total myocardial NOS3 protein and activity were restored to near wild-type (WT) levels in NOS3(-/-)+AdV(NOS3) hearts, and NOS3 relocalized normally with caveolin-3. Ejection function by pressure-volume analysis was enhanced in NOS3(-/-)+AdVbeta(gal) over WT or NOS3(-/-)+AdV(NOS3). More prominently, isoproterenol (ISO)-stimulated systolic and diastolic function in WT was amplified in NOS3(-/-)+AdVbeta(gal), whereas NOS3(-/-)+AdV(NOS3) returned the response to control. ISO-activated systolic function was inhibited 85% by concomitant muscarinic stimulation (carbachol) in NOS3(-/-)+AdV(NOS3) but not NOS3(-/-)+AdVbeta(gal) hearts. Lastly, NOS3(-/-)+AdVbeta(gal) mice displayed enhanced inotropy and lusitropy over WT at slower heart rates but a blunted rate augmentation versus controls. A more positive rate response was restored in NOS3(-/-)+AdV(NOS3) (P<0.001). Thus, myocyte autocrine/intracrine NOS3 regulation in vivo can underlie key roles in beta-adrenergic, muscarinic, and frequency-dependent cardiac regulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression