First Author | Scalia R | Year | 1999 |
Journal | FASEB J | Volume | 13 |
Issue | 9 | Pages | 1039-46 |
PubMed ID | 10336886 | Mgi Jnum | J:115252 |
Mgi Id | MGI:3691183 | Doi | 10.1096/fasebj.13.9.1039 |
Citation | Scalia R, et al. (1999) Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide. FASEB J 13(9):1039-46 |
abstractText | Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that induces vasodilation and increases endothelial release of nitric oxide (NO). NO is also reported to modulate leukocyte-endothelium interaction. Therefore, we hypothesized that VEGF might inhibit leukocyte-endothelium interaction via increased release of NO from the vascular endothelium. We used intravital microscopy of the rat mesenteric microcirculation to measure leukocyte-endothelium interactions 2, 4, and 24 h after systemic administration of VEGF to the rat (120 microg/kg, i.v., bolus). Superfusion of the rat mesentery with either 0.5 U/ml thrombin or 50 microM L-NAME consistently increased the number of rolling, adhering, and transmigrated leukocytes (P<0.01 vs. control mesenteries superfused with Krebs-Henseleit buffer). At 4 and 24 h posttreatment, VEGF significantly attenuated thrombin-induced and L-NAME-induced leukocyte rolling, adherence, and transmigration in rat mesenteric venules. In addition, adherence of isolated rat PMNs to thrombin-stimulated mesenteric artery segments in vitro was significantly reduced in mesenteric arteries isolated from VEGF-treated rats (P<0.001 vs. control rats). Direct measurement of NO demonstrated a threefold increase in basal NO release from aortic tissue of rats injected with VEGF, at 4 and 24 h posttreatment (P<0. 01 vs. aortic tissue from control rats). Finally, systemic administration of VEGF to ecNOS-deficient mice failed to inhibit leukocyte-endothelium interactions observed in peri-intestinal venules. We concluded that VEGF is a potent inhibitor of leukocyte-endothelium interaction, and this effect is specifically correlated to augmentation of NO release from the vascular endothelium.--Scalia, R., Booth, G., Lefer, D. J. Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide. |