|  Help  |  About  |  Contact Us

Publication : Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells.

First Author  Li L Year  1999
Journal  J Immunol Volume  162
Issue  5 Pages  2477-87
PubMed ID  10072486 Mgi Jnum  J:112256
Mgi Id  MGI:3655920 Doi  10.4049/jimmunol.162.5.2477
Citation  Li L, et al. (1999) Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 162(5):2477-87
abstractText  Airway inflammation associated with asthma is characterized by massive infiltration of eosinophils, mediated in part by specific chemoattractant factors produced in the lung. Allergen-specific Th2 cells appear to play a central role in asthma; for example, adoptively transferred Th2 cells induced lung eosinophilia associated with induction of specific chemokines. Interestingly, Th2 supernatant alone administered intranasally to naive mice induced eotaxin, RANTES, monocyte-chemotactic protein-1, and KC expression along with lung eosinophilia. We tested the major cytokines individually and found that IL-4 and IL-5 induced higher levels of macrophage-inflammatory protein-1alpha and KC; IL-4 also increased the production of monocyte-chemotactic protein-1; IL-13 and IL-4 induced eotaxin. IL-13 was by far the most potent inducer of eotaxin; indeed, a neutralizing anti-IL-13 Ab removed most of the eotaxin-inducing activity from Th2 supernatants, although it did not entirely block the recruitment of eosinophils. While TNF-alpha did not stimulate eotaxin production by itself, it markedly augmented eotaxin induction by IL-13. IL-13 was able to induce eotaxin in the lung of JAK3-deficient mice, suggesting that JAK3 is not required for IL-13 signaling in airway epithelial cells; however, eosinophilia was not induced in this situation, suggesting that JAK3 transduces other IL-13-mediated mechanisms critical for eosinophil recruitment. Our study suggests that IL-13 is an important mediator in the pathogenesis of asthma and therefore a potential target for asthma therapy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression