|  Help  |  About  |  Contact Us

Publication : Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis.

First Author  Tokuda E Year  2015
Journal  Neurotherapeutics Volume  12
Issue  2 Pages  461-76
PubMed ID  25761970 Mgi Jnum  J:357699
Mgi Id  MGI:7763841 Doi  10.1007/s13311-015-0346-x
Citation  Tokuda E, et al. (2015) Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics 12(2):461-76
abstractText  Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1(G93A)). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1(G93A) mice, even if the induction was initiated when peak body weight had decreased by 10%. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1(G93A) aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1(G93A) mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

0 Expression