|  Help  |  About  |  Contact Us

Publication : Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor beta-mediated Meckel's cartilage development.

First Author  Ito Y Year  2002
Journal  Dev Dyn Volume  224
Issue  1 Pages  69-78
PubMed ID  11984875 Mgi Jnum  J:76396
Mgi Id  MGI:2179355 Doi  10.1002/dvdy.10088
Citation  Ito Y, et al. (2002) Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factorbeta-mediated Meckel's cartilage development. Dev Dyn 224(1):69-78
abstractText  The proper development of Meckel's cartilage is critical for craniofacial skeletogenesis, because it serves as the primordium for the formation of mandible, malleus, incus, and sphenomandibular ligament. Cranial neural crest (CNC) cells contribute significantly to the formation of Meckel's cartilage. Members of the transforming growth factor beta (TGF-beta) family control the proliferation and differentiation of CNC cells during craniofacial skeletogenesis. TGF-beta signaling is transduced from the cell membrane to the nucleus by means of specific type I and type II receptors and phosphorylated Smad proteins. Here we demonstrate that application of TGF-beta promotes chondrogenesis by specifically increasing proliferation of CNC-derived chondrocytes and production of extracellular matrix. To understand the molecular regulation of TGF-beta signaling, we have examined the biological function of both TGF-beta receptor-regulated and inhibitory Smads during Meckel's cartilage development. The expression patterns of Smad2, 3, and 7 are identical to the ones of endogenous TGF-beta and its cognate receptors during Meckel's cartilage development, establishing the potential that these intracellular signaling Smads may regulate TGF-beta-mediated chondrogenesis. Functional haploinsufficiency of Smad2 delays TGF-beta-mediated Meckel's cartilage development. Overproduction of Smad7 severely inhibits Meckel's cartilage formation, indicating a negative feedback on TGF-beta signaling by inhibitory Smad is critical in orchestrating TGF-beta-mediated gene regulation during embryonic chondrogenesis. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression