|  Help  |  About  |  Contact Us

Publication : Role of C-C chemokine receptors 1 and 5 and CCL3/macrophage inflammatory protein-1alpha in the cutaneous Arthus reaction: possible attenuation of their inhibitory effects by compensatory chemokine production.

First Author  Yanaba K Year  2004
Journal  Eur J Immunol Volume  34
Issue  12 Pages  3553-61
PubMed ID  15517609 Mgi Jnum  J:94599
Mgi Id  MGI:3513578 Doi  10.1002/eji.200425426
Citation  Yanaba K, et al. (2004) Role of C-C chemokine receptors 1 and 5 and CCL3/macrophage inflammatory protein-1alpha in the cutaneous Arthus reaction: possible attenuation of their inhibitory effects by compensatory chemokine production. Eur J Immunol 34(12):3553-61
abstractText  The deposition of immune complexes induces an acute inflammatory response with tissue injury. Immune complex-induced tissue injury is mediated by inflammatory cell infiltration that is highly regulated by multiple chemokines. To assess the role of the chemokine receptors CCR1 and CCR5, and a ligand for these receptors CCL3/macrophage inflammatory protein-1alpha, in this pathogenic process, the reverse passive cutaneous Arthus reaction was induced in mice lacking CCR1, CCR5, or CCL3. Edema was significantly attenuated in CCR1-deficient (CCR1(-/-)) and CCL3(-/-) mice but not CCR5(-/-) mice, compared with wild-type mice. Numbers of infiltrating neutrophils and mast cells were reduced in CCL3(-/-) and CCR1(-/-) mice, respectively, compared with wild-type mice. CCR1 and CCR5 were expressed on neutrophils and mast cells. Remarkably, the intradermal mRNA expression of CCL5/RANTES, another ligand for CCR1 and CCR5, was increased in CCR5(-/-) and CCL3(-/-) mice, compared with wild-type mice, while the cutaneous CCL3 mRNA expression was augmented in CCR1(-/-) and CCR5(-/-) mice. These results indicate that CCR1, CCR5, and CCL3 cooperatively contribute to the cutaneous Arthus reaction, and also suggest that enhanced expression of CCL3 and CCL5 compensates for the loss of CCR1, CCR5, and CCL3 in the reaction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression