First Author | Jia Z | Year | 1998 |
Journal | Learn Mem | Volume | 5 |
Issue | 4-5 | Pages | 331-43 |
PubMed ID | 10454358 | Mgi Jnum | J:51151 |
Mgi Id | MGI:1314772 | Citation | Jia Z, et al. (1998) Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 5(4-5):331-43 |
abstractText | The mechanisms underlying the differential expression of long-term potentiation (LTP) by AMPA and NMDA receptors, are unknown, but could involve G-protein-linked metabotropic glutamate receptors. To investigate this hypothesis we created mutant mice that expressed no metabotropic glutamate receptor 5 (mGluR5), but showed normal development. In an earlier study of these mice we analyzed field- excitatory postsynaptic potential (fEPSPs) in CA1 region of the hippocampus and found a small decrease; possibly arising from changes in the NMDAR-mediated component of synaptic transmission. In the present study we used whole-cell patch clamp recordings of evoked excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons to identify the AMPAR- and NMDAR-mediated components of LTP. Recordings from control mice following tetanus, or agonist application (IS, 3R-1- amino-cyclopentane 1,3-dicarboxylic acid) (ACPD), revealed equal enhancement of the AMPA and NMDA receptor-mediated components. In contrast, CA1 neurons from mGluR5-deficient mice showed a complete loss of the NMDA-receptor-mediated component of LTP (LTP(NMDA)), but normal LTP of the AMPA-receptor-mediated component (LTP(AMPA)). This selective loss of LTP(NMDA) was seen in three different genotypic backgrounds and was apparent at all holding potentials (-70 mV to +20 mV). Furthermore, the LTP(NMDA) deficit in mGluR5 mutant mice could be rescued by stimulating protein kinase C (PKC) with 4beta-phorbol-12,13-dibutyrate (PDBu). These results suggest that PKC may couple the postsynaptic mGluR5 to the NMDA-receptor potentiation during LTP, and that this signaling mechanism is distinct from LTP(AMPA). Differential enhancement of AMPAR and NMDA receptors by mGluR5 also supports a postsynaptic locus for LTP. |