|  Help  |  About  |  Contact Us

Publication : Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation.

First Author  Bajenaru ML Year  2002
Journal  Mol Cell Biol Volume  22
Issue  14 Pages  5100-13
PubMed ID  12077339 Mgi Jnum  J:77208
Mgi Id  MGI:2181170 Doi  10.1128/MCB.22.14.5100-5113.2002
Citation  Bajenaru ML, et al. (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22(14):5100-13
abstractText  Individuals with the neurofibromatosis 1 (NF1) inherited tumor syndrome develop low-grade gliomas (astrocytomas) at an increased frequency, suggesting that the NF1 gene is a critical growth regulator for astrocytes. In an effort to determine the contribution of the NF1 gene product, neurofibromin, to astrocyte growth regulation and NF1-associated astrocytoma formation, we generated astrocyte-specific Nf1 conditional knockout mice (Nf1(GFAP)CKO) by using Cre/LoxP technology. Transgenic mice were developed in which Cre recombinase was specifically expressed in astrocytes by embryonic day 14.5. Successive intercrossing with mice bearing a conditional Nf1 allele (Nf1flox) resulted in GFAP-Cre Nf1flox/flox (Nf1(GFAP)CKO) animals. No astrocytoma formation or neurological impairment was observed in Nf1(GFAP)CKO mice after 20 months, but increased numbers of proliferating astrocytes were observed in several brain regions. To determine the consequence of Nf1 inactivation at different developmental times, the growth properties of embryonic day 12.5 and postnatal day 2 Nf1 null astrocytes were analyzed. Nf1 null astrocytes exhibited increased proliferation but lacked tumorigenic properties in vitro and did not form tumors when injected into immunocompromised mouse brains in vivo. Collectively, our results suggest that loss of neurofibromin is not sufficient for astrocytoma formation in mice and that other genetic or environmental factors might influence NF1-associated glioma tumorigenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

0 Expression