|  Help  |  About  |  Contact Us

Publication : Inhibition of Hsp90 via 17-DMAG induces apoptosis in a p53-dependent manner to prevent medulloblastoma.

First Author  Ayrault O Year  2009
Journal  Proc Natl Acad Sci U S A Volume  106
Issue  40 Pages  17037-42
PubMed ID  19805107 Mgi Jnum  J:153693
Mgi Id  MGI:4366115 Doi  10.1073/pnas.0902880106
Citation  Ayrault O, et al. (2009) Inhibition of Hsp90 via 17-DMAG induces apoptosis in a p53-dependent manner to prevent medulloblastoma. Proc Natl Acad Sci U S A 106(40):17037-42
abstractText  Elevated expression of HSP90 is observed in many tumor types and is associated with a limited clinical response. Targeting HSP90 using inhibitors such as 17-DMAG (17-desmethoxy-17-N,N-dimethylaminoethylaminogeldanamycin) has shown limited therapeutic success. HSP90 regulates the function of several proteins implicated in tumorigenesis although the precise mechanism through which 17-DMAG regulates tumor cell survival remains unclear. We observed a requirement for p53 in mediating 17-DMAG-induced cell death. The sensitivity of primary mouse embryonic fibroblasts and tumor cells to 17-DMAG-induced apoptosis depended on the p53 status. Wild-type MEFs underwent 17-DMAG-induced caspase-dependent cell death, whilst those lacking p53 failed to do so. Interestingly p53-dependent cell death occurred independently of Atm or Arf. Primary tumor cells derived from two models of murine medulloblastoma (Ptch1(+/-);Ink4c(-/-) and p53(FL/FL);Nestin-Cre(+); Ink4c(-/-)) that retain and lack p53 function, respectively, displayed a dependence on functional p53 to engage 17-DMAG-induced apoptosis. Strikingly, 17-DMAG treatment in an allograft model of Ptch1(+/-);Ink4c(-/-) but not p53(FL/FL);Nestin-Cre(+); Ink4c(-/-) tumor cells prevented tumor growth in vivo. Our data suggest that p53 status is a likely predictor of the sensitivity of tumors to 17-DMAG.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

0 Expression