|  Help  |  About  |  Contact Us

Publication : Changes in NO bioavailability regulate cardiac O2 consumption: control by intramitochondrial SOD2 and intracellular myoglobin.

First Author  Li W Year  2004
Journal  Am J Physiol Heart Circ Physiol Volume  286
Issue  1 Pages  H47-54
PubMed ID  12919935 Mgi Jnum  J:259592
Mgi Id  MGI:6142545 Doi  10.1152/ajpheart.00730.2003
Citation  Li W, et al. (2004) Changes in NO bioavailability regulate cardiac O2 consumption: control by intramitochondrial SOD2 and intracellular myoglobin. Am J Physiol Heart Circ Physiol 286(1):H47-54
abstractText  The aim of this study was to investigate the significance of two intracellular scavengers of nitric oxide (NO): 1) superoxide dismutase (SOD) (SOD2) to scavenge intramitochondrial superoxide anion, and 2) cytosolic myoglobin (Mb) in the regulation of tissue O2 consumption. O2 consumption was measured in vitro using a Clark-type O2 electrode. SOD heterozygous mice (SODHZ) (n = 13) and SOD wild-type (SODWT) (n = 5) mice were used. Bradykinin (BK, 10-4 mol/l) reduced O2 consumption by 15% +/- 1 in hearts of SODHZ mice, which was significantly different from SODWT (reduced by 24 +/- 0.4%). Tiron significantly increased the inhibition of O2 consumption by BK in male mice from 15 +/- 1% (n = 13) to 29 +/- 1.2% (n = 4) at 10-4 mol/l concentration (P < 0.05). The effect of carbachol was similar to BK. S-nitroso-N-acetyl penicillamine (SNAP, 10-4 mol/l) reduced O2 consumption by 39 +/- 1.3% in hearts of SODHZ mice, which was not significantly different from SODWT. But at 10-7 mol/l, SNAP caused significantly less inhibition of O2 consumption in SODHZ mice. Mb knockout (MbKO; Mb wild-type n = 6) and (MbWT) mice (n = 6) were also used. Kidney cortex was studied as the negative control because it does not contain Mb. BK (10-4 mol/l) reduced O2 consumption by 32 +/- 2, 29 +/- 1, and 26 +/- 1% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. SNAP (10-4 mol/l) reduced O2 consumption by 39 +/- 3, 42 +/- 4, and 46 +/- 2% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. NG-nitro-l-arginine methyl ester (P < 0.05) inhibited the reduction in O2 consumption induced by BK in the MbKO mouse heart (15 +/- 1%), skeletal muscle (17 +/- 1%), and kidney (17 +/- 1%) as in the MbWT mice. These results suggest that the role of Mb as an intracellular NO scavenger is small, and the increase in mitochondrial superoxide in SODHZ mice may cause a decrease NO bioavailability and alter the control of myocardial O2 consumption by NO.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression