|  Help  |  About  |  Contact Us

Publication : Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice.

First Author  Roos CM Year  2013
Journal  Am J Physiol Heart Circ Physiol Volume  305
Issue  10 Pages  H1428-39
PubMed ID  23997094 Mgi Jnum  J:204531
Mgi Id  MGI:5532774 Doi  10.1152/ajpheart.00735.2012
Citation  Roos CM, et al. (2013) Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol 305(10):H1428-39
abstractText  The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD(+/+)) and manganese SOD heterozygous haploinsufficient (MnSOD(+/-)) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16(ink4a), a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD(+/+) and MnSOD(+/-) mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD(+/+) and MnSOD(+/-) mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD(+/+) mice but significantly impaired endothelial function in MnSOD(+/-) mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression