|  Help  |  About  |  Contact Us

Publication : Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline.

First Author  Zhu X Year  2003
Journal  Biochem J Volume  370
Issue  Pt 3 Pages  987-93
PubMed ID  12466019 Mgi Jnum  J:111536
Mgi Id  MGI:3654379 Doi  10.1042/BJ20021523
Citation  Zhu X, et al. (2003) Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochem J 370(Pt 3):987-93
abstractText  Choline is an essential nutrient for humans and is derived from the diet as well as from de novo synthesis involving methylation of phosphatidylethanolamine catalysed by the enzyme phosphatidylethanolamine N -methyltransferase (PEMT). This is the only known pathway that produces new choline molecules. We used mice with a disrupted Pemt-2 gene (which encodes PEMT; Pemt (-/-)) that have previously been shown to possess no hepatic PEMT enzyme. Male, female and pregnant Pemt (-/-) and wild-type mice ( n =5-6 per diet group) were fed diets of different choline content (deficient, control, and supplemented). Livers were collected and analysed for choline metabolites, steatosis, and apoptotic [terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labelling (TUNEL)] positive cells. We found that, in livers of Pemt (-/-) mice fed any of the diets, there was hepatic steatosis and significantly higher occurrence of TUNEL positive cells compared with wild-type controls. In male, female and pregnant mice, liver phosphatidylcholine concentrations were significantly decreased in Pemt (-/-) choline deficient and in Pemt (-/-) choline control groups but returned to normal in Pemt (-/-) choline supplemented groups. Phosphocholine concentrations in liver were significantly diminished in knockout mice even when choline was supplemented to above dietary requirements. These results show that PEMT normally supplies a significant portion of the daily choline requirement in the mouse and, when this pathway is knocked out, mice are unable to attain normal concentrations of all choline metabolites even with a supplemental source of dietary choline.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression