|  Help  |  About  |  Contact Us

Publication : Npc1 haploinsufficiency promotes weight gain and metabolic features associated with insulin resistance.

First Author  Jelinek D Year  2011
Journal  Hum Mol Genet Volume  20
Issue  2 Pages  312-21
PubMed ID  21036943 Mgi Jnum  J:166906
Mgi Id  MGI:4850187 Doi  10.1093/hmg/ddq466
Citation  Jelinek D, et al. (2011) Npc1 haploinsufficiency promotes weight gain and metabolic features associated with insulin resistance. Hum Mol Genet 20(2):312-21
abstractText  A recent population-based genome-wide association study has revealed that the Niemann-Pick C1 (NPC1) gene is associated with early-onset and morbid adult obesity. Concurrently, our candidate gene-based mouse growth study performed using the BALB/cJ NPC1 mouse model (Npc1) with decreased Npc1 gene dosage independently supported these results by suggesting an Npc1 gene-diet interaction in relation to early-onset weight gain. To further investigate the Npc1 gene in relation to weight gain and metabolic features associated with insulin resistance, we interbred BALB/cJ Npc1(+/-) mice with wild-type C57BL/6J mice, the latter mouse strain commonly used to study aspects of diet-induced obesity and insulin resistance. This breeding produced a hybrid (BALB/cJ-C57BL/6J) Npc1(+/-) mouse model with increased susceptibility to weight gain and insulin resistance. The results from our study indicated that these Npc1(+/-) mice were susceptible to increased weight gain characterized by increased whole body and abdominal adiposity, adipocyte hypertrophy and hepatic steatosis in the absence of hyperphagia. Moreover, these Npc1(+/-) mice developed abnormal metabolic features characterized by impaired fasting glucose, glucose intolerance, hyperinsulinemia, hyperleptinemia and dyslipidemia marked by an increased concentration of cholesterol and triacylglycerol associated with low-density lipoprotein and high-density lipoprotein. The overall results are consistent with a unique Npc1 gene-diet interaction that promotes both weight gain and metabolic features associated with insulin resistance. Therefore, the NPC1 gene now represents a previously unrecognized gene involved in maintaining energy and metabolic homeostasis that will contribute to our understanding concerning the current global epidemic of obesity and type 2 diabetes mellitus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression