First Author | Fang XX | Year | 2022 |
Journal | Neural Regen Res | Volume | 17 |
Issue | 12 | Pages | 2771-2777 |
PubMed ID | 35662228 | Mgi Jnum | J:355069 |
Mgi Id | MGI:7642008 | Doi | 10.4103/1673-5374.339490 |
Citation | Fang XX, et al. (2022) Interleukin 17A deficiency alleviates neuroinflammation and cognitive impairment in an experimental model of diabetic encephalopathy. Neural Regen Res 17(12):2771-2777 |
abstractText | Interleukin 17A (IL-17A) was previously shown to be a key pro-inflammatory factor in diabetes mellitus and associated complications. However, the role of IL-17A in diabetic encephalopathy remains poorly understood. In this study, we established a mouse model of diabetic encephalopathy that was deficient in IL-17A by crossing Il17a(-/-) mice with spontaneously diabetic Ins2(Akita) (Akita) mice. Blood glucose levels and body weights were monitored from 2-32 weeks of age. When mice were 32 weeks of age, behavioral tests were performed, including a novel object recognition test for assessing short-term memory and learning and a Morris water maze test for evaluating hippocampus-dependent spatial learning and memory. IL-17A levels in the serum, cerebrospinal fluid, and hippocampus were detected with enzyme-linked immunosorbent assays and real-time quantitative polymerase chain reaction. Moreover, proteins related to cognitive dysfunction (amyloid precursor protein, beta-amyloid cleavage enzyme 1, p-tau, and tau), apoptosis (caspase-3 and -9), inflammation (inducible nitric oxide synthase and cyclooxygenase 2), and occludin were detected by western blot assays. Pro-inflammatory cytokines including tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma in serum and hippocampal tissues were measured by enzyme-linked immunosorbent assays. Microglial activation and hippocampal neuronal apoptosis were detected by immunofluorescent staining. Compared with that in wild-type mice, mice with diabetic encephalopathy had higher IL-17A levels in the serum, cerebrospinal fluid, and hippocampus; downregulation of occludin expression; lower cognitive ability; greater loss of hippocampal neurons; increased microglial activation; and higher expression of inflammatory factors in the serum and hippocampus. IL-17A knockout attenuated the abovementioned changes in mice with diabetic encephalopathy. These findings suggest that IL-17A participates in the pathological process of diabetic encephalopathy. Furthermore, IL-17A deficiency reduces diabetic encephalopathy-mediated neuroinflammation and cognitive defects. These results highlight a role for IL-17A as a mediator of diabetic encephalopathy and potential target for the treatment of cognitive impairment induced by diabetic encephalopathy. |