|  Help  |  About  |  Contact Us

Publication : Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice.

First Author  Gurley SB Year  2010
Journal  Am J Physiol Renal Physiol Volume  298
Issue  3 Pages  F788-95
PubMed ID  20042456 Mgi Jnum  J:157873
Mgi Id  MGI:4437188 Doi  10.1152/ajprenal.90515.2008
Citation  Gurley SB, et al. (2010) Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice. Am J Physiol Renal Physiol 298(3):F788-95
abstractText  Previous studies have shown that Akita mice bearing the Ins2(+/C96Y) mutation have significant advantages as a type I diabetes platform for developing models of diabetic nephropathy (DN; Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Am J Physiol Renal Physiol 290: F214-F222, 2006). In view of the critical role for genetic factors in determining susceptibility to DN in humans, we investigated the role of genetic background on kidney injury in Akita mice. To generate a series of inbred Akita mouse lines, we back-crossed the Ins2(C96Y) mutation more than six generations onto the 129/SvEv and DBA/2 backgrounds and compared the extent of hyperglycemia and renal disease with the standard C57BL/6-Ins2(+/C96Y) line. Male mice from all three Akita strains developed marked and equivalent hyperglycemia. However, there were significant differences in the level of albuminuria among the lines with a hierarchy of DBA/2 > 129/SvEv > C57BL/6. Renal and glomerular hypertrophy was seen in all of the lines, but significant increases in mesangial matrix compared with baseline nondiabetic controls were observed only in the 129 and C57BL/6 backgrounds. In F1(DBA/2 x C57BL/6)-Ins2(+/C96Y) mice, the extent of albuminuria was similar to the parental DBA/2-Ins2(+/C96Y) line; they also developed marked hyperfiltration. These studies identify strong effects of genetic background to modify the renal phenotype associated with the Ins2(C96Y) mutation. Identification of these naturally occurring strain differences should prove useful for nephropathy modeling and may be exploited to allow identification of novel susceptibility alleles for albuminuria in diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression