|  Help  |  About  |  Contact Us

Publication : Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas.

First Author  Gastinger MJ Year  2006
Journal  Invest Ophthalmol Vis Sci Volume  47
Issue  7 Pages  3143-50
PubMed ID  16799061 Mgi Jnum  J:112243
Mgi Id  MGI:3655907 Doi  10.1167/iovs.05-1376
Citation  Gastinger MJ, et al. (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 47(7):3143-50
abstractText  PURPOSE: To identify amacrine cells that are vulnerable to degeneration during the early stages of diabetes. METHODS: Whole retinas from streptozotocin (STZ)-diabetic rats and Ins2(Akita) mice were fixed in paraformaldehyde. Apoptotic cells in the retina were quantified using terminal dUTP nick-end labeling (TUNEL) and active caspase-3 (CM-1) immunohistochemistry. Immunohistochemical markers for choline acetyltransferase (ChAT) and tyrosine hyroxylase (TH) were also used to quantify populations of amacrine cells in the Ins2Akita mouse retinas. RESULTS: The number of TUNEL-positive nuclei increased from 29+/-4 in controls to 72+/-9 in the STZ-diabetic rat retinas after only 2 weeks of diabetes. In rats, CM-1-immunoreactive (IR) cells were found primarily in the inner nuclear and ganglion cell layers after 2, 8, and 16 weeks of diabetes. At each end point, the number of CM-1-IR cells in the retina was elevated by diabetes. Approximately 2% to 6% of the CM-1-IR cells in the inner nuclear layer (INL) were double-labeled for TH immunoreactivity. After 6 months of diabetes in the Ins2Akita mouse, the morphology of the labeled ChAT-IR and TH-IR amacrine cell somas and dendrites appeared normal. A quantitative analysis revealed a 20% decrease in the number of cholinergic and a 16% decrease in dopaminergic amacrine cells in the diabetic mouse retinas, compared with the nondiabetic control. CONCLUSIONS: Dopaminergic and cholinergic amacrine cells are lost during the early stages of retinal neuropathy in diabetes. Loss of these neurons may play a critical role in the development of visual deficits in diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression